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The convergence of the Bubnov-Galerkin method is studied for linear 

equations in Hilbert spaces. A new proof of the convergence of this 

method is given for equations with completely continuous operators. This 

proof makes it possible to generalize certain known results. 

In a separable Hilbert space H, let a linear (possibly unbounded) 

operator L be given. The domain of definition and the range of values 

of L are each dense in H. The problem is to solve the equation 

Lx = f, fEH 

The Bubnov-Galerkin method consists of the following. Let Rn(n = 1, 

2, . . . ) be a sequence of finite-dimensional subspaces from the domain 

of definition of L, and let P,,, be orthogonal projection operators on 

these subspaces. 

plete [ll in H. 

equation 

We shall use 

The sequence R 

We are seeking In 

is assumed to be projectionally com- 

approximate solution x,, E Rn of the 

P,Lx, = P,f 

the notation 

I P&x, I 
2, = min I Lx,, , “nERn 

In [d it was proved that if the sequences of subspaces R,, and L,, = 

LB,,. (n = 1, 2, . . . ) are projectionally complete in H then a necessary 

and sufficient condition for the strong convergence of Lxu to f(f E H) 

when n goes to infinity is that T be greater than zero, where T = inf 

lim 7” when n - a. Just as in El], we shall say that the operator L is 
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regular if any two projectionally complete sequences Rn and L = LR 
satisfy the condition T > O. (We note that for a bounded operitor Lnthe 
Projectional completeness of the sequence Ln is implied by the pro- 

jectional completeness of the sequence Rn.) 

Theorem f. 

L-l. 
Let a linear bounded operator L have an inverse operator 

If there exists a positive number 6 such that for every weakly con- 

vergent (to zero) sequence xr. E H with the property 

) and the inequality F < inf lim 1 (Lx,, x”) ) 
IX*1 = 1 (n = 1, 

2, . . . when n - m, then the 
operator L is regular. 

Here, and in what follows, we assume that the bounded linear oper- 

ators are defined in all of H. 

Proof. Let us assume that the operator L is not regular. Then there 

must exist a projectionally complete sequence of subspaces Rn and a 

sequence xn E R (n = 1, 2, . . . ) such that the following relations hold: 

I P&x, I I P*L%l I 
lili-~J~I=0, or ;lm-=0 (1) 

because (Lx,( < 11 L )I 1x1. Obviously we may assume that 1~~1 = 1. Let z 

be an arbitrary element in !I. We have 

If we let n - a, it follows from (I) that lim / P,LznI = 0, and from 

the boundedness of the sequence (LX,? and +be projectional completeness 

of the sequence {R,) it folloiss that llm I (LXn’ z - P,z) / 7 0. 

Hence, lim (xn, L*z) ; 0. The range of values of the operator L* is 

dense in H, for otherwise there would exist a non-zero x E H which 

would be orthogonal to all elements of the form L*z. This would imply the 

equation LX = 0, which contradicts the hypothesis that L-1 exists. 

Therefore. the sequence (z,,) converges weakly to zero. Furthermore 

From equation 

this contradicts 

been proved. 

(1) it foiiaws that lim ( (LX,, x,,) 1 = 0 as n - m. But 

the hypotheses of the theorem. The theorem has thus 

Simultaneously we have also proved that the operator L- 1 is bounded. 

Indeed, if the operator L-l were not bounded then there would exist a 

sequence xn E H (n = 1, 2, . . . ) for which 

lL%l 
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Repeating the arguments, which followed directly after (l), with only 

slight modifications, we would again come to a contradiction. 

Theorem 2. Let a linear bounded operator L have the form L = L,, t T, 
where L, is regular, while T is a completely continuous operator. If 

zero does not belong to the spectrum of the operator L, then the operator 

L is regular. 

Proof. Let us assume that the theorem is false. Then, repeating the 

proof of Theorem 1, we find that there exists a projectionally complete 

sequence {x,1. xn E Rn, 1~~1 = 1, such that 

lim ( P,Lx, I= 0 
Tl+cc 

(2) 

From the existence and boundedness of the operator L-l it follows 

that 

I -%I I > ,,Li (I (3) 

By the triangular inequality we have 

I P&ox, I d I P&x, I + I P,,Tx, I, IJ%,I> ILx,! - lTr,,l (4) 

From known properties of completely continuous operators it follows 

that 

lim /Tr,l=(J (5) 
*- 

Making use of inequalities (3) and (4) and equations (2) and (5), we 

obtain 

We have arrived at a contradiction because the operator L, is regular 

by hypothesis. This proves the theorem. In particular cases, when the 

operator LO is the identity or a positive definite operator, this theorem 

has been known before. Pol’skii has conjectured [II that the following 

theorem is true. 

Theorem 3. Let L, be a linear bounded pperator which satisfies the 

inequality inf (Lox, X) I I ’ 0, x E H, ‘I:1 = 1, and let T be a complete- 

ly cant inuous 1 inear operator. If zero does not belong to the spectrum 

of the operator L = LO t T, then the operator L is regular. 

Theorem 3 is a direct consequence of Theorem 2 because L, is a 

regular operator [il. It can be derived quite easily from Theorem 1 also. 

Let us now consider the problem of characteristic values. Suppose 
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that 

L = A + hB 

where A and R are linear bounded operators and h is a number in some 

region D of the complex plane. In the sequel we shall say that h is a 
regular point of the operator L if there exists a bounded operator L-l 

defined in the entire space If; if h is not a regular point we shall say 

that h belongs to the spectrum of the operator L. The values of A for 

which the equation LX = 0 has a nontrivial solution, we shall call the 

characteristic values of L, and this nontrivial solution we shall call 

a characteristic vector of the operator L belonging to the character- 

istic number A. The same statements apply to the operator J’,L which will 

assumed to be operating only on the elements of Rn. 

Theorem 4. Suppose that some closed bounded set Do C D does not con- 

tain any point of the spectrum of the operator L. If the operator L is 

regular for every h E D,, then there exists an r~,, such that for all 

n> “,_,, D, will not contain any point of the spectrum PnL. 

Proof. Let us write 

I P&x, I 

It is obvious that p,(h) = 0 if and only if h is a characteristic 

value of the operator P,L, and if p,(h) + 0, then h is a regular point 

of the operator F,L, and 

From the inequality IZn/ \( 11 L-’ 1) 1 Lzn\ we obtain 

I P&x, I I P,,% I Tn 

I *n I h I/ I,-’ 11 1 Lx, ) 2 11 L-1 /) 

and, hence 

Since the operator L is regular if h E Do, it follows from inequal- 

ity (‘7) that 

0 <IL (h) = iuf lim pn (h) when n - m 

ForanyA EDandh’E D, wehave 

(8) 

I PnL (h’) x,1 I P,L CL) xn 1 1 P,L (h’) 2, -Pp,L (W zn I 

lZnl - lxnl G I *, I 
6IIBIIIh’-kl 



The convergence of the Bubnou Galerkin method 1773 

From this we obtain 

1 p* (A’) - p, 6) I d IP II I 1’ - 1 I 

Because of inequalities (8) and (9). for every point A E De there 
exists a neighborhood such that for all n after a certain one, the in- 

equality p,(h’) > p(A)/2 > 0 holds for all h’ in this neighborhood. 
From a well-known lemma on the existence of a finite subcovering, it 
now follows that there exists a positive number 6 such that for all n 
after a certain one p,(h) > F for all A E D,. This completes the proof 

of the theorem. 

Theorem 5. Let A, E D be a characteristic value of the operator L 
such that there exists a neighborhood, of the point A,, which does not 
contain any other points of the spectrum of the operator L, and the 
operator L is regular for all points A f he of this neighborhood. Then 
there exists a sequence {A,) of characteristic values of the operator 
P,L which converges to A,. 

Proof. Inside the given neighborhood we take a circle C with center 
at A,. Since the circle is a closed bounded set, it follows from the 
proof of Theorem 4 that there exists a positive number 6 such that 
p,(A) > 6 (h E C) for all n sufficiently large. Let x be one of the 
characteristic vectors (of the operator L) belonging to the character- 
istic value A,. It is obvious that 

lim 
I P,LP,s I 1 Lr 1 

1 P,Z 1 = m = 0 whenn-roo 

and, hence, lim +(A,) = 0. Therefore, the following inequalities will 
be satisfied simultaneously for all n greater than a certain one: 

hence, the function cl,,(A) has a minimum at some point A,, Ihn - $)I < p. 
where p is the radius of the circle C. We will prove that P,(A,) = 0. 

Let us assume that P,(h,) is not zero. Then all points of circle 

A,1 < p will be regular points of the operator P,L, 

Ihn - 
and, therefore, the 

operator (P,L)-’ will be a holomorphic function of A in the circle 

IA - hul < p. But then the norm of the operator (P,L)-’ cannot have a 
q a:imum in the circle Ih .- A,( < p. (This fact follows from the theorem 
of the mean in the same iay that the principle of the maximum of the 
modulus of an analytic function is a consequence of this theorem 121.) 
From this and from equation (6) it follows that the function P,(h) can 
not have a minimum different from zero in the circle IA n- A,I GP* 
Hence, U,(An) = 0. By Theorem 4 we have lim A,, = 0 when n -+ 0~. 



Note 1. Theorems 4 and 5 remain true when the operator L is a holo_ 
morphic function of A; the proof hardly differs from the given one. 

Note 2. ffe have considered Only bounded operators, The established 
theorems can be used in the investigation of the convergence of the 
Rubnov-~alerkln method for unbouuded operators if one can introduce a 

new space HO in such a way that the equations of the Rubnov-Galerkin 
method in if coincide With the equations of the Bubnov-Galerkin method 

in H, for an equation which is equivalent to the original one, but whieb 
nom h#s a bounded operator (in H,) which satisfies the hypotheses of the 
theorems. The introduction of the new operator is given in f23 For some 
differential ,pperators. 

Note 3. In tl3 there was considered a projection method more general 
than the Bubnov-Galerkfn one. In this method one selects two projection- 
ally complete sequences of subspaces (R,j and {Ma) in N, and flz, re- 
spectively, where 17, is a Hilbert space which contains the domain of de- 

finition of the given operator, and !f2 is a Hilbert space that contains 
the range of values of this operator. Theorem 2 becomes valid in this 
case if one changes the formulation as follows. 

Let the bounded linear operator I., which has a bmaded inverse i#-l, 
have the form t = Lo + T, where T is compIetely eontiouous, and to is an 

operator for which subsequences (R,j and (Ma) satisfy condition (A). 

Then sequences (R,) and <itt& t f sa is y condition (A) for the operator t 

also. 

Theorems 4 and 5 also remain true if they are reformulated in a CDr- 
responding manner. The changes which wilf have to be made in the Proofs 

are obvious. 
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